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The sailwing has many special characteristics due to its flexible structure. In order to estimate the sailwing
perfermance theoretically, a numerical analysis method is presented for obtaining aerodynamic characteristics
and profile forms of a sailwing with a rounded leading edge and upper and lower individual surface shapes. The
trailing edge is fixed and membranes are not stretched by tension although they have slackness. Through
numerical examples, it is shown that a sailwing of this type has a completely different pressure distribution from
that of a single membrane sailwing with a leading edge of the circular cylinder or oval type. The latter has shape
peaks in the pressure distribution which may have undesirable effects on the sailwing performance. These peaks

in the pressure distribution can be removed by adopting & D-spar leading edge of some kind.

Nomenclature
c =chord length
(o) =lift coefficient
C, =pressure coefficient= (P—P_ ) /Y2p U2
AC, =pressure difference coefficient= (P—P,) / V2pU?,
Cpi =internal pressure coefficient = (P, — P, )/ V2pU2
Cr =nondimensional tension=T/V2pUZ ¢
) =length of membrane between the leading edge
(£ =0) and the trailing edge (£ =1) (one side)
PP, =static pressure on wing surface, in freestream
P, =internal pressure of sailwing
T =chordwise tension per unit span
U, =freestream velocity
o =angle of attack
v =nondimensional strength of vorticity
€ = (//c) —1: nondimensional excess length of
membrane
£ =nondimensional coordinates x/c, y/c
P =density
¢ =velocity potential
Y =stream function on airfoil surface (= constant)
Subscripts
i,j =ith, jth elements of the airfoil
L =leading edge spar coordinate
m =membrane coordinate
K} =separation point of leading edge spar and
membrane _
u,l =upper surface, lower surface
Introduction

HE sailwing geometry dealt with in this report is shown in
Fig. 1. It consists of a rigid leading edge spar (a), a tip rib
and a root rib (b,c) which are fixed to the leading edge spar, a
trailing edge wire (d) which is stretched between the tip and
root ribs, and flexible wing surfaces (e,f) wrapped around the
leading edge spar and the trailing edge, forming the upper and
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lower wing surfaces. The wing surfaces and the overall
structure of the sailwing deform easily, and the aerodynamic
characteristics of this type of a wing are very different from
those of a rigid wing. The sailwing is expected to have various
field applications.

Previous theoretical investigations of a sailwing through the
linearized two-dimensional analyses by Thwaites,! Nielsen, 2
and Tuck, et al.,? as well as the application by Ormiston4 of
Nielsen’s theory to a sailwing considering elongations of the
membrane and the trailing edge wire, were all concerned with
a sailwing consisting of a zero thickness single membrane.
There are numerous experimental investigations of the
aerodynamic characteristics of a sailwing4’ and of its ap-
plication to the foldable light airplane’$ or to the windmill
generator.®° However, no theoretical investigation can be
found of a sailwing which consists of a rounded leading edge
and separate upper and lower wing surfaces, as shown in Fig.
1, although such a design is expected to have many
aerodynamic and structural advantages, e.g., controllability
by using internal pressure.

The present report presents a numerical analysis of the
aerodynamic characteristics of such a sailwing, and shows the
effect of leading edge shape and slackness (€) on the pressure
distribution through numerical examples.

Basic Equations

The following assumptions are made for simplicity in the
analysis of a streamwise cross-section of the sailwing (Fig. 2).

(b) Tip Rib

(a) Leading Edge
Spar

{d) Trailing Edge Wire

{c) Root Rib
Fig.1 Concept of sailwing with curved leading edge and thickness.
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ET/(W\CT Equations (1-7) are satisfied independently for both the upper
AaCp and lower surfaces. The resulting boundary value problem is
K to solve Egs. (8) and (9) under the boundary conditions
— e —— represented by Eqgs. (3-7).
J,Cf; Mm(€) T 3¢ 3%¢
t+t \/ 382 + a2 =0 ®
of o™ J
S | ===~ 1+{(5) "+ (5))
" = AC,=C) =G, =C, ~1+{{5 ) + o ®

Fig.2 Schematic model of sailwing cross-section.

1) Flow across the section is two-dimensional, inviscid, and
incompressible.

2) The membrane has no porosity.

3) The membrane is flexible and has excess length (ce), but
does not stretch by tension.

4) The upper and lower membranes are fixed at the leading
edge [(£,1) =(0,0) in Fig. 2)].

5) The coordinates of the leading edge spar and the trailing
edge are fixed. This means that the deflection of the trailing
edge wire is neglected.

As shown in Fig. 2, the coordinate of each surface is

presented as follows:
n(&y=9.(§) O=<EsE,
1)

7(§) =n, (£)

The relation between the tension C; (Fig. 2) and the dif-
ference in internal and external pressure AC, is expressed as
follows:

§,<t=l

@2n/d5?)
Tk @sapE TG @

Equation (2) is valid generally. It expresses the force balance
between the pressure difference (right-hand side) and the
tension of a membrane (left-hand side) with the profile form
n=f({,). In a practical sailwing, where the membrane slope
(dn/d®) is small, Eq. (2) is reduced to the following simpler
form

d?y
Cr i =FAC, 3)
where C, becomes the chordwise tension, — indicates the

upper surface, and + the lower surface.

The boundary conditions of Eq. (3) are that the membrane
and the leading edge spar separate smoothly at the point,
¢£=¢, which generally is different for the upper and lower
surfaces:

T =1, @
dn, _ duy,
i~ a ®

The condition under which the trailing edge is fixed is:
n=0 at £E=1] 6)

By assuming that the membrane length ¢(1 +¢) is constant,
the nondimensional membrane length ¢ is obtained as follows:

fo V@@ ) i+ (G oe=rve @

Numerical Analysis

In order to solve the above boundary value problem,
calculations of the effect of the pressure distribution on the
sailwing surface deformation and the calculation of the
potential flow around the deformed airfoil are carried out
separately. The final solution is obtained by iteration of both
calculations. By adopting the iteration method very accurate
computation of the pressure distribution and profile shape is
possible, even in the case of a highly cambered sailwing with a
large leading edge radius. By referring to previous results for
other similarly shaped sailwings, the first approximation of
pressure distribution is made. The final solution can usually
be obtained in a few iterations by this approximation.

Calculation of Airfoil Deformation

When AC, is given, n(%) can be obtained by integrating
Eq. (3) as follows:

£ £
cﬂ,(s)=x5$ SE AC,dEdE+Cyt+C, 10)

where C, and C, are constants. In Eq. (10), the unknowns are
¢, Cr, C, and C,, so that Eq. (10) must be solved by
boundary conditions of Egs. (4-7). However, the boundary
condition equations (4, 5, 7) involve &,, and & is also a limit
of integration in Eq. (10). As Eq. (10) cannot be solved
directly £, is assumed to be at a selected point on the leading
edge spar. A corresponding value 5 =17’ is calculated by using
Egs. (4-6, 10). By substituting %’ in the left-hand side of Eq.
(7), it is evaluated as follows:

dn’?
dg

S: S )2+ (dE) 2 + S: 1+( )d£=1+e+Ae

(an

where Ae is the difference from the given ¢, because the
assumed separation point £ is not correct. For the correct &,
value Ae equals zero on the leading edge spar, and 5’ (£) is the
coordinate of the sailwing profile which fulfills all of the
boundary conditions.

The accuracy of e affects the pressure distribution and C,,
because ¢ greatly affects the camber of the airfoil. The
practical calculation of £, is divided into three stages in order
to make Ae sufficiently small or close to zero. The coordinate
of the leading edge in each stage is determined by means of
Lagrange’s interpolation. Since the upper and lower surface
calculations are conducted independently it might happen that
the upper and lower surfaces cross near the trailing edge,
which would be impossible in a real sailwing. However, this
anomaly is made sufficiently small so that its effect on the
pressure distribution near the trailing edge is no more than the
effect of the thick boundary layer. Therefore, the computed
upper and lower surfaces are attached at the trailing edge to
the middle point of both calculated surfaces.

Calculation of Pressure Distribution
There are many calculation methods for the pressure
distribution of a two-dimensional arbitrary airfoil. Of these,
Oeller’s method!® and that of Hess, et al.,!! have been
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combined and improved in order to make them suitable for
the calculation of a sailwing which, as mentioned in the
previous section, may attach the upper and lower surfaces
near the trailing edge. )

Considering the singularities at the leading and trailing
edges the coordinates for the sailwing profile are divided as
follows:

27 (i—
£i=§(1+cos0); BzL(lNl

i=1,2,...,N+1 (12)

By means of Oeller’s method,!® the vortex sheets are
distributed on segments of the airfoil surface in order to
satisfy the condition that the stream function ¥, is constant
on the airfoil surface. Because the upper and lower surfaces
may attach near the trailing edge, as mentioned above, these
calculations are conducted separately for two cases:

1) The case where the upper and lower surface do not
attach. In this case the method for calculating the vortex
distribution is the same as Oeller’s, that is, under Kutta’s
condition:

YI= "IN (13)

(N + 1) simultaneous equations are calculated as follows:

oy 1) () (8

| T ! | i

!(I'zw ““““ - ‘KleN t YN = B.N (14)
1 0---01 0 ‘lfloJ 0

1

I 14 7 ’ 7 ’
5= 52 |5 & 2+ L) — gl (E T+ D)

(&1 —E]) +17j'+,{tan‘1—£1,fi —tan"éi,}] for izj

Nj+1 nj
1 AS
== AS(I = —1)} j=j
27r{ n 3 for i=j
AS; length of jth element, (15)
B,= (n: 4 %i1) cosa— Eitérn)) sina (16)

! 2 -2

where £', ¢’ are coordinates which have origin at the center of
the ith element, and the direction of the ¢’ axis is equal to one
of the jth elements.

2) The case where both surfaces attach. When k& elements
of the upper and lower surfaces attach forward of the trailing
edge, this portion is replaced by a set of single vortex sheets.
Therefore, the number of vortex sheets is (N—k). From Eq.
(12), the first element is considered to be small enough when
Nis taken to be large. Kutta’s condition is

¥:=0 17

Then the equation of vortex sheets becomes (N—k+1)
simultaneous equations as follows:

Kln T K1,N—/:I { '}"1 5:1

| Te e l | | 1
Ky g1 —-—--- N-k,N—k 1 YN-k =| By«

1 0 0 0 Yo 0
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When the distribution of vortex sheets is calculated, the
tangential velocity components of each element, induced by
the vortex of unit strength A4, are presented as follows based
upon the method of Hess, et al. !

A= —V, sinf+V, cosd (19)
1 (X' +AS/2)2+y'2 .
= [ - 3 ,2] for izj
4 L(X' —AS/2)2+y 20
=0 for i=j
1 X' +4S/2 X' —AS8/2
b= g flan (F55) —an o (B555)]
27 Yy y
for iz 2n

=—= for i=j

where X', y’ are the coordinates of the center of the ith
element with their origin at the center of the jth element. The
direction of the X’ -axis is tangent to the ith element and 8 is
the angle between the X’-axis and the ith element. The
velocity distribution on the airfoil is calculated as the sum of
the induced tangential velocities and the uniform freestream
velocity.

Comparison of Numerical Calculation with
Exact Pressure Distribution and
Analytical Solution

First, the pressure distributions calculated by the method
mentioned in the above section are compared with exact
solutions obtained by conformal transformation. Figs. 3a and
3b show the comparisons of pressure distributions for a flat
plate and a thick cambered Joukowski airfoil, respectively.
The numerical results are shown to be very close to the exact
solutions.

Figures 4 and 5 show the C; («) and C,(a) relations
calculated by the present method and by Nielsen’s analytical
method? for the case of a single two-dimensional flexible
aerodynamic surface of zero thickness. In this case, AC, in
Eq. (3) is the difference of C, on the upper and lower sur-
faces. The boundary conditions are

7=0 at £=1,0 (22)
C; is calculated as follows. By eliminating Eq. (7), because
(dn/d¥) is small for a practical sailwing, one obtains

e=S;./1+(d—aZ )st—I%S;(j—Z)zdg 3)

As the right-hand side of Eq. (23) is given by the integration
of Eq. (3), Cy can be deduced as follows:

C,= i S; (— S: AdeE+C,)zd$ 24)

where

€=, J, ccptear

In the calculation of the pressure distribution the method
given in the previous section for case 2 is adopted. Figures 4
and 5 show C; («) in the case of e=1and 4%, and Cr(«) in
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o Numerical

I
-2
Flat plate a=6°

Fig. 3a Comparison of pressure distribution on flat plate with exact
solution.

Ce

Joukowski airfoil

a=3°
Fig. 3b Comparison of pressure distribution on Joukowski airfoil
with exact solution.

the case of e=1%. For ¢=1% the numerical results are in
relatively good accordance with Nielsen’s analytical solutions
using Fourier series.? However, the C; (a) relations in the
case of e = 4% show some deviation between the two methods.
This is considered to be due to the lack of validity of Nielsen’s
linearized theory as e =4% produces a rather large camber.
Figures 4 and 5 show the results obtained using the first
approximation of the pressure distribution in order to insure
that the airfoil shape stays convex. Under this initial con-
dition, the numerical results for C is larger than Cra,, are
in good agreement with Nielsen’s solutions in Fig. 5.
Solutions for C’s smaller than Cra,, cannot be obtained by
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Fig. 4 Comparison of C; — o relations with Nielsen’s.
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Fig.5 Comparison of « — C relations with Nielsen’s, when e = 1%.

the present numerical analysis. This case is left for future
improvement of the present analysis.

Calculation Results

Figures 6-10 show calculated results which represent the
typical pressure distributions and profile forms of sailwings.
In these figures, profile forms and pressure distributions are
indicated for given a and e. The associated calculated values
for C, and Cy are also shown. C; is an essential parameter
when the strength of the membrane is given for the design of
sailwings. In these calculations, the first approximation of the
pressure distribution is obtained prescribing convex upper and
lower surfaces. The internal pressure P; is set equal to P,,, i.e.
Cp; =0. The calculated results for single and double mem-
branes sailwings are shown in Fig. 6. The two sailwings have
the same a and almost the same C;. However, the double
membrane sailwing with rounded leading edge has a pressure
distribution completely different from the one for the single
membrane wing.

The pressure distribution in Fig. 7 show that the moment
center of a sailwing with relatively large slackness is more
rearward than that of a conventional rigid wing. In addition,
large lift (C, =1.65) is obtained at a relatively low angle of
attack. These characteristics are in accordance with Fink’s
experimental results.” When the membranes have smaller
slackness (e) the characteristics approach those of a con-
ventional rigid wing, as can be seen in Fig. 8. The pressure
distribution in Fig. 7 has sharp peaks of minimum pressure
coefficient near the point where the membrane separates from
the leading edge spar. These peaks cause boundary layer
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Fig. 6 Profile forms and pressure distributions of sailwing with
round leading edge of 15% chord diameter and sailwing of no
thickness at same angle of attack.
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Fig. 7 Sailwing with round leading edge of 15% chord diameter.

separation and, consequently, have undesirable effects on the
airfoil performance. These peaks of C, also occur in the case
where the sailwing has a smaller round spar (Fig. 9) or an oval
leading edge spar (Fig. 10). The sailwing in Fig. 11 has a
leading edge which has the same profile form of NACA6412
within the 7.5% chord from the leading edge, and connects
smoothly in the rear half of the leading edge with the mem-
brane. Sweeney et al.’ call this type of leading edge a ‘‘D-spar

J.AIRCRAFT
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Fig.8 Sailwing with round leading edge with small slackness.
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Fig. 9 Sailwing with round leading edge of 10% chord diameter.

leading edge.”” The upper and lower surfaces of the sailwing
have S and 1% slack respectively. The D-spar leading edge
sailwing shows a large improvement in regard to the pressure
peaks discussed earlier (Figs. 7-10). Consequently, better
performance is expected to be obtained with a D-spar leading
edge than with the round spar leading edge. This is in
qualitative agreement with the experimental resuits reported
by Fink’ showing that the D-spar gave a higher L/D value
than the round spar, and is confirmed further by the results
reported by Sweeney, et al., showing that the D-spar im-
proved airfoil efficiency compared to the round spar in their
windmill experiments.
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Fig. 10 Sailwing with ellipse leading edge of 20% x10% chord
diameters.
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Fig. 11 Removal of pressure peaks by a D-shape leading edge spar
and difference of slacknesses between upper and lower surfaces.
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Conclusion

A theoretical method has been developed for two-
dimensional numerical analysis of the aerodynamic
characteristics of a sailwing airfoil with a rounded leading
edge and separate upper and lower wing surfaces (mem-
branes) for the conditions that the trailing edge is fixed and
the membranes are not stretched by tension. Through
numerical examples it is demonstrated that:

1) The pressure distribution on a sailwing with a rounded
leading edge is completely different from the one on a single
membrane sailwing.

2) A sailwing with a circular or oval type leading edge has
sharp suction peaks in the pressure distribution which may
have undesirable effects on sailwing performance.

3) A D-spar sailwing with a leading edge of some kind
exhibits less pronounced pressure peaks, explaining the
improvements of sailwing performance obtained with a D-
spar ieading edge in the experiments by Sweeney, et al.,? and
Fink.’
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